tensorflow和keras混用
在tensorflow中可以调用keras,有时候让模型的建立更加简单。如下这种是官方写法:
import tensorflow as tf from keras import backend as K from keras.layers import Dense from keras.objectives import categorical_crossentropy from keras.metrics import categorical_accuracy as accuracy from tensorflow.examples.tutorials.mnist import input_data # create a tf session,and register with keras。 sess = tf.Session() K.set_session(sess) # this place holder is the same with input layer in keras img = tf.placeholder(tf.float32, shape=(None, 784)) # keras layers can be called on tensorflow tensors x = Dense(128, activation='relu')(img) x = Dense(128, activation='relu')(x) preds = Dense(10, activation='softmax')(x) # label labels = tf.placeholder(tf.float32, shape=(None, 10)) # loss function loss = tf.reduce_mean(categorical_crossentropy(labels, preds)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) mnist_data = input_data.read_data_sets('MNIST_data', one_hot=True) # initialize all variables init_op = tf.global_variables_initializer() sess.run(init_op) with sess.as_default(): for i in range(1000): batch = mnist_data.train.next_batch(50) train_step.run(feed_dict={img:batch[0], labels:batch[1]}) acc_value = accuracy(labels, preds) with sess.as_default(): print(acc_value.eval(feed_dict={img:mnist_data.test.images, labels:mnist_data.test.labels}))
上述代码中,在训练阶段直接采用了tf的方式,甚至都没有定义keras的model!官网说 最重要的一步就是这里:
K.set_session(sess)
创建一个TensorFlow会话并且注册Keras。这意味着Keras将使用我们注册的会话来初始化它在内部创建的所有变量。
keras的层和模型都充分兼容tensorflow的各种scope, 例如name scope,device scope和graph scope。
经过测试,下面这种不需要k.set_session()也是可以的。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# build module
img = tf.placeholder(tf.float32, shape=(None, 784))
labels = tf.placeholder(tf.float32, shape=(None, 10))
x = tf.keras.layers.Dense(128, activation='relu')(img)
x = tf.keras.layers.Dense(128, activation='relu')(x)
prediction = tf.keras.layers.Dense(10, activation='softmax')(x)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=prediction, labels=labels))
train_optim = tf.train.AdamOptimizer().minimize(loss)
path="/home/vv/PycharmProject/Cnnsvm/MNIST_data"
mnist_data = input_data.read_data_sets(path, one_hot=True)
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for _ in range(1000):
batch_x, batch_y = mnist_data.train.next_batch(50)
sess.run(train_optim, feed_dict={img: batch_x, labels: batch_y})
acc_pred = tf.keras.metrics.categorical_accuracy(labels, prediction)
pred = sess.run(acc_pred, feed_dict={labels: mnist_data.test.labels, img: mnist_data.test.images})
print('accuracy: %.3f' % (sum(pred) / len(mnist_data.test.labels)))
print(pred)
如果在下载导入mnist数据出错,可以在网站上下好,本地导入。
mnist_data = input_data.read_data_sets(path, one_hot=True)
x1 = tf.layers.conv2d(img2,64,2) x2 = tf.keras.layers.Conv2D(img2,64,2) x3 = tf.keras.layers.Conv2D(64,2)(img2)
x1和x3卷积效果相同